103 research outputs found

    Integrated System Test Approaches for the NASA Ares I Crew Launch Vehicle

    Get PDF
    NASA is maturing test and evaluation plans leading to flight readiness of the Ares I crew launch vehicle. Key development, qualification, and verification tests are planned . Upper stage engine sea-level and altitude testing. First stage development and qualification motors. Upper stage structural and thermal development and qualification test articles. Main Propulsion Test Article (MPTA). Upper stage green run testing. Integrated Vehicle Ground Vibration Testing (IVGVT). Aerodynamic characterization testing. Test and evaluation supports initial validation flights (Ares I-Y and Orion 1) and design certification

    Paving the Way: The Influence of Early Research and Development Programs on Apollo, Saturn, and Legacy System Development

    Get PDF
    As we celebrate the 50th anniversary of the first successful human landings on the surface of the Moon in 1969, it is insightful to review the many historic accomplishments that contributed to this astounding human achievement. While the Apollo Program officially began following the charge by United States President John F. Kennedy in 1961, much of the foundation for Apollo was already underway with early research and development that began as early as the close of the second World War. Innovations and key decisions prior to the formal initiation of the Apollo Program, and even prior to the formation of the National Aeronautics and Space Administration (NASA), enabled the relatively rapid development of the Saturn V rocket, the Apollo capsule, and the Lunar Lander systems needed to achieve the goal of landing humans on the Moon and returning them safely to Earth by the close of the 1960s

    In-space assembly-servicing requirements

    Get PDF
    A method for developing the requirements for in-space assembly, servicing, and checkout of the proposed Mars space transfer vehicles is discussed. Required in-space operations and functions are identified in relation to various Earth to Orbit (ETO) vehicles by looking at the manifesting options of baseline Mars Space Transfer Vehicles (STV). Each operation is then reduced to a minimum complexity state resulting in a set of operational primitive functions. These primitive functions are used to assess the tradeoffs between robotic, telerobotic, and EVA operations. The study demonstrates that the complexity of the in-space operations remains stable with ETO vehicle size, and therefore the functions, and ultimately the infrastructure required to support proposed missions, are relatively unaffected by varying the ETO vehicle size within the range considered for this study

    Ares V: Shifting the Payload Design Paradigm

    Get PDF
    NASA is designing the Ares V heavy-lift cargo launch vehicle to send more crew and cargo to more places on the lunar surface than the 1960s-era Saturn V and to provide ongoing support for a permanent lunar outpost. This uncrewed cargo vehicle is designed to operate together with the Ares I crew vehicle (Figure 1). In addition to this role, however, its unmatched mass and volume capability represent a national asset for exploration, science, and commerce. The Ares V also enables or significantly enhances a large class of space missions not thought possible by scientists and engineers since the Saturn V program ended over 30 years ago. Compared to current systems, it will offer approximately five times the mass and volume to most orbits and locations. This should allow prospective mission planners to build robust payloads with margins that are three to five times the industry norm. The space inside the planned payload shroud has enough usable volume to launch the volumetric equivalent of approximately 10 Apollo Lunar Modules or approximately five equivalent Hubble Space Telescopes. This mass and volume capability to low-Earth orbit (LEO) enables a host of new scientific and observation platforms, such as telescopes, satellites, planetary and solar missions, as well as being able to provide the lift for future large in-space infrastructure missions, such as space based solar power and mining, Earth asteroid defense, propellant depots, etc. In addition, payload designers may also have the option of simplifying their designs or employing Ares V s payload as dumb mass to reduce technical and operational risk. The Ares V team is engaging the potential payload community now, two to three years before System Requirements Review (SRR), in order to better understand the additional requirements from the payload community that could be accommodated in the Ares V design in its conceptual phase. This paper will discuss the Ares V reference mission and capability, as well as its potential to perform other missions in the future

    Reflections of Science and Technology in American Drama From 1913 to 1941.

    Get PDF
    The growth of science and technology exploded in the first half of the twentieth century. At the same time America was developing for the first time a dramatic literature that was worthy of international respect. Beginning in 1913, when the young Eugene O\u27Neill wrote his first plays, this study traces the appearances of science and technology in the drama from that year until the start of World War II. Special attention has been given to the clock, the car, electronic communications, scientists, dehumanization in the machine age, technology as religion, and film. The drama of the era reveals a previously unnoted fascination with the elements of technology, and abounds with both positive and negative reactions. Included in the study are the complete works of Eugene O\u27Neill through 1941, the Pulitzer Prize-winning plays of the era, and selected plays by Maxwell Anderson, Philip Barry, S. N. Behrman, Marc Connelly, Susan Glaspell, Paul Green, Lillian Hellman, Sidney Howard, George S. Kaufman, George Kelly, John Howard Lawson, Clifford Odets, Elmer Rice, Sophie Treadwell, Robert Sherwood, and Thornton Wilder among others

    Unified wavelet and gaussian filtering for segmentation of CT images; application in segmentation of bone in pelvic CT images

    Get PDF
    Background The analysis of pelvic CT scans is a crucial step for detecting and assessing the severity of Traumatic Pelvic Injuries. Automating the processing of pelvic CT scans could impact decision accuracy, decrease the time for decision making, and reduce health care cost. This paper discusses a method to automate the segmentation of bone from pelvic CT images. Accurate segmentation of bone is very important for developing an automated assisted-decision support system for Traumatic Pelvic Injury diagnosis and treatment. Methods The automated method for pelvic CT bone segmentation is a hierarchical approach that combines filtering and histogram equalization, for image enhancement, wavelet analysis and automated seeded region growing. Initial results of segmentation are used to identify the region where bone is present and to target histogram equalization towards the specific area. Speckle Reducing Anisotropic Didffusion (SRAD) filter is applied to accentuate the desired features in the region. Automated seeded region growing is performed to refine the initial bone segmentation results. Results The proposed method automatically processes pelvic CT images and produces accurate segmentation. Bone connectivity is achieved and the contours and sizes of bones are true to the actual contour and size displayed in the original image. Results are promising and show great potential for fracture detection and assessing hemorrhage presence and severity. Conclusion Preliminary experimental results of the automated method show accurate bone segmentation. The novelty of the method lies in the unique hierarchical combination of image enhancement and segmentation methods that aims at maximizing the advantages of the combined algorithms. The proposed method has the following advantages: it produces accurate bone segmentation with maintaining bone contour and size true to the original image and is suitable for automated bone segmentation from pelvic CT images

    Aerodynamic Characteristics of Two Waverider-Derived Hypersonic Cruise Configurations

    Get PDF
    An evaluation was made on the effects of integrating the required aircraft components with hypersonic high-lift configurations known as waveriders to create hypersonic cruise vehicles. Previous studies suggest that waveriders offer advantages in aerodynamic performance and propulsion/airframe integration (PAI) characteristics over conventional non-waverider hypersonic shapes. A wind-tunnel model was developed that integrates vehicle components, including canopies, engine components, and control surfaces, with two pure waverider shapes, both conical-flow-derived waveriders for a design Mach number of 4.0. Experimental data and limited computational fluid dynamics (CFD) solutions were obtained over a Mach number range of 1.6 to 4.63. The experimental data show the component build-up effects and the aerodynamic characteristics of the fully integrated configurations, including control surface effectiveness. The aerodynamic performance of the fully integrated configurations is not comparable to that of the pure waverider shapes, but is comparable to previously tested hypersonic models. Both configurations exhibit good lateral-directional stability characteristics

    Fracture Detection in Traumatic Pelvic CT Images

    Get PDF
    Fracture detection in pelvic bones is vital for patient diagnostic decisions and treatment planning in traumatic pelvic injuries. Manual detection of bone fracture from computed tomography (CT) images is very challenging due to low resolution of the images and the complex pelvic structures. Automated fracture detection from segmented bones can significantly help physicians analyze pelvic CT images and detect the severity of injuries in a very short period. This paper presents an automated hierarchical algorithm for bone fracture detection in pelvic CT scans using adaptive windowing, boundary tracing, and wavelet transform while incorporating anatomical information. Fracture detection is performed on the basis of the results of prior pelvic bone segmentation via our registered active shape model (RASM). The results are promising and show that the method is capable of detecting fractures accurately

    NASA Research Center Contributions to Space Shuttle Return to Flight (SSRTF)

    Get PDF
    Contributions provided by the NASA Research Centers to key Space Shuttle return-to-flight milestones, with an emphasis on debris and Thermal Protection System (TPS) damage characterization, are described herein. Several CAIB recommendations and Space Shuttle Program directives deal with the mitigation of external tank foam insulation as a debris source, including material characterization as well as potential design changes, and an understanding of Orbiter TPS material characteristics, damage scenarios, and repair options. Ames, Glenn, and Langley Research Centers have performed analytic studies, conducted experimental testing, and developed new technologies, analysis tools, and hardware to contribute to each of these recommendations. For the External Tank (ET), these include studies of spray-on foam insulation (SOFI), investigations of potential design changes, and applications of advanced non-destructive evaluation (NDE) technologies to understand ET TPS shedding during liftoff and ascent. The end-to-end debris assessment included transport analysis to determine the probabilities of impact for various debris sources. For the Orbiter, methods were developed, and validated through experimental testing, to determine thresholds for potential damage of Orbiter TPS components. Analysis tools were developed and validated for on-orbit TPS damage assessments, especially in the area of aerothermal environments. Advanced NDE technologies were also applied to the Orbiter TPS components, including sensor technologies to detect wing leading edge impacts during liftoff and ascent. Work is continuing to develop certified TPS repair options and to develop improved methodologies for reinforced carbon-carbon (RCC) damage progression to assist in on-orbit repair decision philosophy

    NASA Crew Launch Vehicle Flight Test Options

    Get PDF
    Options for development flight testing (DFT) of the Ares I Crew Launch Vehicle (CLV) are discussed. The Ares-I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to launch the Crew Exploration Vehicle (CEV) into low Earth Orbit (LEO). The Ares-I implements one of the components of the Vision for Space Exploration (VSE), providing crew and cargo access to the International Space Station (ISS) after retirement of the Space Shuttle and, eventually, forming part of the launch capability needed for lunar exploration. The role of development flight testing is to demonstrate key sub-systems, address key technical risks, and provide flight data to validate engineering models in representative flight environments. This is distinguished from certification flight testing, which is designed to formally validate system functionality and achieve flight readiness. Lessons learned from Saturn V, Space Shuttle, and other flight programs are examined along with key Ares-I technical risks in order to provide insight into possible development flight test strategies. A strategy for the first test flight of the Ares I, known as Ares I-1, is presented
    corecore